293 research outputs found

    A Cross-level Verification Methodology for Digital IPs Augmented with Embedded Timing Monitors

    Get PDF
    Smart systems implement the leading technology advances in the context of embedded devices. Current design methodologies are not suitable to deal with tightly interacting subsystems of different technological domains, namely analog, digital, discrete and power devices, MEMS and power sources. The interaction effects between the components and between the environment and the system must be modeled and simulated at system level to achieve high performance. Focusing on digital subsystem, additional design constraints have to be considered as a result of the integration of multi-domain subsystems in a single device. The main digital design challenges combined with those emerging from the heterogeneous nature of the whole system directly impact on performance, hence propagation delay, of the digital component. In this paper we propose a design approach to enhance the RTL model of a given digital component for the integration in smart systems, and a methodology to verify the added features at system-level. The design approach consists of ``augmenting'' the RTL model through the automatic insertion of delay sensors, which are capable of detecting and correcting timing failures. The verification methodology consists of an automatic flow of two steps. Firstly the augmented model is abstracted to system-level (i.e., SystemC TLM); secondly mutants, which are code mutations to emulate timing failures, are automatically injected into the abstracted model. Experimental results demonstrate the applicability of the proposed design and verification methodology and the effectiveness of the simulation performance

    Light neutralino in the MSSM: An update with the latest LHC results

    Full text link
    We discuss the scenario of light neutralino dark matter in the minimal supersymmetric standard model, which is motivated by the results of some of the direct detection experiments --- DAMA, CoGENT, and CRESST. We update our previous analysis with the latest results of the LHC. We show that new LHC constraints disfavour the parameter region that can reproduce the results of DAMA and CoGENT.Comment: 4 pages, 4 figures, to appear in the conference proceedings of TAUP 2011, Munich Germany, 5-9 September 201

    The ν\nu-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Full text link
    We discuss a small-scale experiment, called ν\nu-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV-regime. The detector consists of low-threshold CaWO4_4 and Al2_2O3_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ\gamma, neutron and surface backgrounds. A first prototype Al2_2O3_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of ∼20{\sim20} eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ\sigma) within a measuring time of ≲2{\lesssim2} weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.Comment: 14 pages, 19 figure

    The SciCryo Project and Cryogenic Scintillation of Al2O3Al_2O_3 for Dark Matter

    No full text
    International audienceWe discuss cryogenic scintillation of Al2O3. Room-temperature measurements with α particles are first carried out to study effect of Ti concentration on response. Measurements under X-rays between room temperature and 10 K confirm a doubling of light output. The integration of a scintillation-phonon detector into an ionization-phonon dark matter search is underway, and the quenching factor for neutrons has been verified

    Physiotherapists and Osteopaths’ Attitudes: Training in Management of Temporomandibular Disorders

    Get PDF
    Temporomandibular disorders (TMDs) are a condition which has multifactorial etiology. The most acknowledged method to classify TMDs is the diagnostic criteria (DC) introduced firstly by Dworkin. This protocol considers different aspects that are not only biological, but even psychosocial. Diagnosis is often based on anamnesis, physical examination and instrumental diagnosis. TMDs are classified as intra-articular and/or extra-articular disorders. Common signs and symptoms include jaw pain and dysfunction, earache, headache, facial pain, limitation to opening the mouth, ear pain and temporomandibular joint (TMJ) noises. This study regards two kind of clinicians that started in the last years to be more involved in the treatment of TMDs: osteopaths (OOs) and physiotherapists (PTs). The purpose is to analyze their attitude and clinical approach on patients affected by TMDs. Four hundred therapists answered an anonymous questionnaire regarding TMJ and TMDs. OOs showed greater knowledges on TMDs and TMJ and, the therapists with both qualifications seemed to be most confident in treating patients with TMDs. In conclusion this study highlights OOs and all the clinicians with this qualification, have a higher confidence in treating patients with TMD than the others. Dentists and orthodontists, according to this study, should co-work with OOs and PTs, because they are the specialists more requested by them than other kinds of specialists
    • …
    corecore